GIS Analysis
- AggregateRaster
- BlockMaximumGridding
- BlockMinimumGridding
- Centroid
- CentroidVector
- Clump
- ConstructVectorTin
- CreateHexagonalVectorGrid
- CreatePlane
- CreateRectangularVectorGrid
- Dissolve
- EliminateCoincidentPoints
- ExtendVectorLines
- ExtractByAttribute
- ExtractNodes
- ExtractRasterValuesAtPoints
- FilterRasterFeaturesByArea
- FindLowestOrHighestPoints
- HeatMap
- IdwInterpolation
- LayerFootprint
- Medoid
- MinimumBoundingBox
- MinimumBoundingCircle
- MinimumBoundingEnvelope
- MinimumConvexHull
- NaturalNeighbourInterpolation
- NearestNeighbourGridding
- PolygonArea
- PolygonLongAxis
- PolygonPerimeter
- PolygonShortAxis
- RadialBasisFunctionInterpolation
- RasterArea
- RasterCellAssignment
- RasterPerimeter
- Reclass
- ReclassEqualInterval
- ReclassFromFile
- SmoothVectors
- SplitVectorLines
- TinGridding
- TravellingSalesmanProblem
- VectorHexBinning
- VoronoiDiagram
AggregateRaster
This tool can be used to reduce the grid resolution of a raster by a user specified amount. For example, using
an aggregation factor (--agg_factor
) of 2 would result in a raster with half the number of rows and columns.
The grid cell values (--type
) in the output image will consist of the mean, sum, maximum, minimum, or range
of the overlapping grid cells in the input raster (four cells in the case of an aggregation factor of 2).
See Also: Resample
Parameters:
Flag | Description |
---|---|
-i, --input | Input raster file |
-o, --output | Output raster file |
--agg_factor | Aggregation factor, in pixels |
--type | Statistic used to fill output pixels |
Python function:
wbt.aggregate_raster(
i,
output,
agg_factor=2,
type="mean",
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=AggregateRaster -v ^
--wd="/path/to/data/" -i=input.tif -o=output.tif ^
--output_text
Author: Dr. John Lindsay
Created: 13/12/2017
Last Modified: 20/01/2019
BlockMaximumGridding
Creates a raster grid based on a set of vector points and assigns grid values using a block maximum scheme.
Parameters:
Flag | Description |
---|---|
-i, --input | Input vector Points file |
--field | Input field name in attribute table |
--use_z | Use z-coordinate instead of field? |
-o, --output | Output raster file |
--cell_size | Optionally specified cell size of output raster. Not used when base raster is specified |
--base | Optionally specified input base raster file. Not used when a cell size is specified |
Python function:
wbt.block_maximum_gridding(
i,
field,
output,
use_z=False,
cell_size=None,
base=None,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=BlockMaximumGridding -v ^
--wd="/path/to/data/" -i=points.shp --field=ELEV -o=output.tif ^
--cell_size=1.0
>>./whitebox_tools -r=BlockMaximumGridding -v ^
--wd="/path/to/data/" -i=points.shp --use_z -o=output.tif ^
--base=existing_raster.tif
Author: Dr. John Lindsay
Created: 09/10/2018
Last Modified: 09/12/2019
BlockMinimumGridding
Creates a raster grid based on a set of vector points and assigns grid values using a block minimum scheme.
Parameters:
Flag | Description |
---|---|
-i, --input | Input vector Points file |
--field | Input field name in attribute table |
--use_z | Use z-coordinate instead of field? |
-o, --output | Output raster file |
--cell_size | Optionally specified cell size of output raster. Not used when base raster is specified |
--base | Optionally specified input base raster file. Not used when a cell size is specified |
Python function:
wbt.block_minimum_gridding(
i,
field,
output,
use_z=False,
cell_size=None,
base=None,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=BlockMinimumGridding -v ^
--wd="/path/to/data/" -i=points.shp --field=ELEV -o=output.tif ^
--cell_size=1.0
>>./whitebox_tools -r=BlockMinimumGridding -v ^
--wd="/path/to/data/" -i=points.shp --use_z -o=output.tif ^
--base=existing_raster.tif
Author: Dr. John Lindsay
Created: 09/10/2018
Last Modified: 09/12/2019
Centroid
This tool calculates the centroid, or average location, of raster polygon objects. For vector features, use the CentroidVector tool instead.
See Also: CentroidVector
Parameters:
Flag | Description |
---|---|
-i, --input | Input raster file |
-o, --output | Output raster file |
--text_output | Optional text output |
Python function:
wbt.centroid(
i,
output,
text_output=False,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=Centroid -v --wd="/path/to/data/" ^
-i=polygons.tif -o=output.tif
>>./whitebox_tools -r=Centroid ^
-v --wd="/path/to/data/" -i=polygons.tif -o=output.tif ^
--text_output
Author: Dr. John Lindsay
Created: 22/07/2017
Last Modified: 18/10/2019
CentroidVector
This can be used to identify the centroid point of a vector polyline or polygon feature or a group of vector points. The output is a vector shapefile of points. For multi-part polyline or polygon features, the user can optionally specify whether to identify the centroid of each part. The default is to treat multi-part features a single entity.
For raster features, use the Centroid tool instead.
Parameters:
Flag | Description |
---|---|
-i, --input | Input vector file |
-o, --output | Output vector file |
Python function:
wbt.centroid_vector(
i,
output,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=CentroidVector -v --wd="/path/to/data/" ^
-i=in_file.shp -o=out_file.shp
Author: Dr. John Lindsay
Created: 20/09/2018
Last Modified: 24/07/2020
Clump
This tool re-categorizes data in a raster image by grouping cells that form
discrete, contiguous areas into unique categories. Essentially this will produce
a patch map from an input categorical raster, assigning each feature unique
identifiers. The input raster should either be
Boolean (1's and 0's) or categorical. The input raster could be created using
the Reclass tool or one of the comparison operators (GreaterThan, LessThan,
EqualTo, NotEqualTo). Use the treat zeros as background cells options
(--zero_back
) if you would like to only assigned contiguous groups of non-zero
values in the raster unique identifiers. Additionally, inter-cell connectivity
can optionally include diagonally neighbouring cells if the --diag
flag is
specified.
See Also: Reclass, GreaterThan, LessThan, EqualTo, NotEqualTo
Parameters:
Flag | Description |
---|---|
-i, --input | Input raster file |
-o, --output | Output raster file |
--diag | Flag indicating whether diagonal connections should be considered |
--zero_back | Flag indicating whether zero values should be treated as a background |
Python function:
wbt.clump(
i,
output,
diag=True,
zero_back=False,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=Clump -v --wd="/path/to/data/" ^
-i=input.tif -o=output.tif --diag
Author: Dr. John Lindsay
Created: 22/06/2017
Last Modified: 18/10/2019
ConstructVectorTin
This tool creates a vector triangular irregular network (TIN) for a set of vector points (--input
)
using a 2D Delaunay triangulation algorithm.
TIN vertex heights can be assigned based on either a field in the vector's attribute table (--field
),
or alternatively, if the vector is of a z-dimension ShapeTypeDimension, the point z-values may be
used for vertex heights (--use_z
). For LiDAR points, use the LidarConstructVectorTIN tool instead.
Triangulation often creates very long, narrow triangles near the edges of the data coverage, particularly
in convex regions along the data boundary. To avoid these spurious triangles, the user may optionally
specify the maximum allowable edge length of a triangular facet (--max_triangle_edge_length
).
See Also: LidarConstructVectorTIN
Parameters:
Flag | Description |
---|---|
-i, --input | Input vector points file |
--field | Input field name in attribute table |
--use_z | Use the 'z' dimension of the Shapefile's geometry instead of an attribute field? |
-o, --output | Output vector polygon file |
--max_triangle_edge_length | Optional maximum triangle edge length; triangles larger than this size will not be gridded |
Python function:
wbt.construct_vector_tin(
i,
output,
field=None,
use_z=False,
max_triangle_edge_length=None,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=ConstructVectorTIN -v ^
--wd="/path/to/data/" -i=points.shp --field=HEIGHT ^
-o=tin.shp
>>./whitebox_tools -r=ConstructVectorTIN -v ^
--wd="/path/to/data/" -i=points.shp --use_z -o=tin.shp
Author: Dr. John Lindsay
Created: 21/09/2018
Last Modified: 07/12/2019
CreateHexagonalVectorGrid
This tool can be used to create a hexagonal vector grid. The extent of the hexagonal
grid is based on the extent of a user-specified base file (any supported raster format,
shapefiles, or LAS files). The user must also specify the hexagonal cell width (--width
)
and whether the hexagonal orientation (--orientation
) is horizontal
or vertical
.
See Also: CreateRectangularVectorGrid
Parameters:
Flag | Description |
---|---|
-i, --base, --input | Input base file |
-o, --output | Output vector polygon file |
--width | The grid cell width |
--orientation | Grid Orientation, 'horizontal' or 'vertical' |
Python function:
wbt.create_hexagonal_vector_grid(
i,
output,
width,
orientation="horizontal",
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=CreateHexagonalVectorGrid -v ^
--wd="/path/to/data/" -i=file.shp -o=outfile.shp --width=10.0 ^
--orientation=vertical
Author: Dr. John Lindsay
Created: 15/09/2018
Last Modified: 27/08/2021
CreatePlane
This tool can be used to create a new raster with values that are determined by the equation of a simple plane. The user
must specify the name of a base raster (--base
) from which the output raster coordinate and dimensional information
will be taken. In addition the user must specify the values of the planar slope gradient (S; --gradient
; --aspect
)
in degrees, the planar slope direction or aspect (A; 0 to 360 degrees), and an constant value (k; --constant
). The
equation of the plane is as follows:
Z = tan(S) × sin(A - 180) × X + tan(S) × cos(A - 180) × Y + k
where X and Y are the X and Y coordinates of each grid cell in the grid. Notice that A is the direction, or azimuth, that the plane is facing
Parameters:
Flag | Description |
---|---|
--base | Input base raster file |
-o, --output | Output raster file |
--gradient | Slope gradient in degrees (-85.0 to 85.0) |
--aspect | Aspect (direction) in degrees clockwise from north (0.0-360.0) |
--constant | Constant value |
Python function:
wbt.create_plane(
base,
output,
gradient=15.0,
aspect=90.0,
constant=0.0,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=CreatePlane -v --wd="/path/to/data/" ^
--base=base.tif -o=NewRaster.tif --gradient=15.0 ^
--aspect=315.0
Author: Dr. John Lindsay
Created: 11/07/2017
Last Modified: 30/01/2020
CreateRectangularVectorGrid
This tool can be used to create a rectangular vector grid. The extent of the rectangular
grid is based on the extent of a user-specified base file (any supported raster format,
shapefiles, or LAS files). The user must also specify the origin of the grid (--xorig
and --yorig
) and the grid cell width and height (--width
and --height
).
See Also: CreateHexagonalVectorGrid
Parameters:
Flag | Description |
---|---|
-i, --base, --input | Input base file |
-o, --output | Output vector polygon file |
--width | The grid cell width |
--height | The grid cell height |
--xorig | The grid origin x-coordinate |
--yorig | The grid origin y-coordinate |
Python function:
wbt.create_rectangular_vector_grid(
i,
output,
width,
height,
xorig=0,
yorig=0,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=CreateRectangularVectorGrid -v ^
--wd="/path/to/data/" -i=file.shp -o=outfile.shp --width=10.0 ^
--height=10.0 --xorig=0.0 --yorig=0.0
Author: Dr. John Lindsay
Created: 15/09/2018
Last Modified: 19/05/2020
Dissolve
This tool can be used to remove the interior, or shared, boundaries within a vector
polygon coverage. You can either dissolve all interior boundaries or dissolve those
boundaries along polygons with the same value of a user-specified attribute within
the vector's attribute table. It may be desirable to use the VectorCleaning
tool
to correct any topological errors resulting from the slight misalignment of nodes
along shared boundaries in the vector coverage before performing the Dissolve operation.
See Also: Clip, Erase, Polygonize
Parameters:
Flag | Description |
---|---|
-i, --input | Input vector file |
--field | Dissolve field attribute (optional) |
-o, --output | Output vector file |
--snap | Snap tolerance |
Python function:
wbt.dissolve(
i,
output,
field=None,
snap=0.0,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=Dissolve -v --wd="/path/to/data/" ^
-input=layer1.shp --field=SIZE -o=out_file.shp ^
--snap=0.0000001
Author: Dr. John Lindsay
Created: 13/11/2018
Last Modified: 22/11/2018
EliminateCoincidentPoints
This tool can be used to remove any coincident, or nearly coincident, points from a vector points file. The user must specify the name of the input file, which must be of a POINTS ShapeType, the output file name, and the tolerance distance. All points that are within the specified tolerance distance will be eliminated from the output file. A tolerance distance of 0.0 indicates that points must be exactly coincident to be removed.
See Also: LidarRemoveDuplicates
Parameters:
Flag | Description |
---|---|
-i, --input | Input vector file |
-o, --output | Output vector points file |
--tolerance | The distance tolerance for points |
Python function:
wbt.eliminate_coincident_points(
i,
output,
tolerance,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=EliminateCoincidentPoints -v ^
--wd="/path/to/data/" -i=input_file.shp -o=out_file.shp ^
--tolerance=0.01
Author: Dr. John Lindsay
Created: 16/09/2018
Last Modified: 13/10/2018
ExtendVectorLines
This tool can be used to extend vector lines by a specified distance. The user must input the names of the input and output shapefiles, the distance to extend features by, and whether to extend both ends, line starts, or line ends. The input shapefile must be of a POLYLINE base shape type and should be in a projected coordinate system.
Parameters:
Flag | Description |
---|---|
-i, --input | Input vector polyline file |
-o, --output | Output vector polyline file |
--dist | The distance to extend |
--extend | Extend direction, 'both ends' (default), 'line start', 'line end' |
Python function:
wbt.extend_vector_lines(
i,
output,
dist,
extend="both ends",
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=ExtendVectorLines -v ^
--wd="/path/to/data/" -i=in_file.shp -o=out_file.shp ^
--dist=10.0 --extend='both ends'
Author: Dr. John Lindsay
Created: 20/09/2018
Last Modified: 13/10/2018
ExtractByAttribute
This tool extracts features from an input vector into an output file based on attribute properties. The user must
specify the name of the input (--input
) and output (--output
) files, along with the filter statement (--statement
).
The conditional statement is a single-line logical condition containing one or more attribute variables contained in
the file's attribute table that evaluates to TRUE/FALSE. In addition to the common comparison and logical
operators, i.e. < > <= >= == (EQUAL TO) != (NOT EQUAL TO) || (OR) && (AND), conditional statements may contain a
any valid mathematical operation and the null
value.
Identifier | Argument Amount | Argument Types | Description |
---|---|---|---|
min | >= 1 | Numeric | Returns the minimum of the arguments |
max | >= 1 | Numeric | Returns the maximum of the arguments |
len | 1 | String/Tuple | Returns the character length of a string, or the amount of elements in a tuple (not recursively) |
floor | 1 | Numeric | Returns the largest integer less than or equal to a number |
round | 1 | Numeric | Returns the nearest integer to a number. Rounds half-way cases away from 0.0 |
ceil | 1 | Numeric | Returns the smallest integer greater than or equal to a number |
if | 3 | Boolean, Any, Any | If the first argument is true, returns the second argument, otherwise, returns the third |
contains | 2 | Tuple, any non-tuple | Returns true if second argument exists in first tuple argument. |
contains_any | 2 | Tuple, Tuple of any non-tuple | Returns true if one of the values in the second tuple argument exists in first tuple argument. |
typeof | 1 | Any | returns "string", "float", "int", "boolean", "tuple", or "empty" depending on the type of the argument |
math::is_nan | 1 | Numeric | Returns true if the argument is the floating-point value NaN, false if it is another floating-point value, and throws an error if it is not a number |
math::is_finite | 1 | Numeric | Returns true if the argument is a finite floating-point number, false otherwise |
math::is_infinite | 1 | Numeric | Returns true if the argument is an infinite floating-point number, false otherwise |
math::is_normal | 1 | Numeric | Returns true if the argument is a floating-point number that is neither zero, infinite, subnormal, or NaN, false otherwise |
math::ln | 1 | Numeric | Returns the natural logarithm of the number |
math::log | 2 | Numeric, Numeric | Returns the logarithm of the number with respect to an arbitrary base |
math::log2 | 1 | Numeric | Returns the base 2 logarithm of the number |
math::log10 | 1 | Numeric | Returns the base 10 logarithm of the number |
math::exp | 1 | Numeric | Returns e^(number) , (the exponential function) |
math::exp2 | 1 | Numeric | Returns 2^(number) |
math::pow | 2 | Numeric, Numeric | Raises a number to the power of the other number |
math::cos | 1 | Numeric | Computes the cosine of a number (in radians) |
math::acos | 1 | Numeric | Computes the arccosine of a number. The return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1] |
math::cosh | 1 | Numeric | Hyperbolic cosine function |
math::acosh | 1 | Numeric | Inverse hyperbolic cosine function |
math::sin | 1 | Numeric | Computes the sine of a number (in radians) |
math::asin | 1 | Numeric | Computes the arcsine of a number. The return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1] |
math::sinh | 1 | Numeric | Hyperbolic sine function |
math::asinh | 1 | Numeric | Inverse hyperbolic sine function |
math::tan | 1 | Numeric | Computes the tangent of a number (in radians) |
math::atan | 1 | Numeric | Computes the arctangent of a number. The return value is in radians in the range [-pi/2, pi/2] |
math::atan2 | 2 | Numeric, Numeric | Computes the four quadrant arctangent in radians |
math::tanh | 1 | Numeric | Hyperbolic tangent function |
math::atanh | 1 | Numeric | Inverse hyperbolic tangent function. |
math::sqrt | 1 | Numeric | Returns the square root of a number. Returns NaN for a negative number |
math::cbrt | 1 | Numeric | Returns the cube root of a number |
math::hypot | 2 | Numeric | Calculates the length of the hypotenuse of a right-angle triangle given legs of length given by the two arguments |
math::abs | 1 | Numeric | Returns the absolute value of a number, returning an integer if the argument was an integer, and a float otherwise |
str::regex_matches | 2 | String, String | Returns true if the first argument matches the regex in the second argument (Requires regex_support feature flag) |
str::regex_replace | 3 | String, String, String | Returns the first argument with all matches of the regex in the second argument replaced by the third argument (Requires regex_support feature flag) |
str::to_lowercase | 1 | String | Returns the lower-case version of the string |
str::to_uppercase | 1 | String | Returns the upper-case version of the string |
str::trim | 1 | String | Strips whitespace from the start and the end of the string |
str::from | >= 0 | Any | Returns passed value as string |
bitand | 2 | Int | Computes the bitwise and of the given integers |
bitor | 2 | Int | Computes the bitwise or of the given integers |
bitxor | 2 | Int | Computes the bitwise xor of the given integers |
bitnot | 1 | Int | Computes the bitwise not of the given integer |
shl | 2 | Int | Computes the given integer bitwise shifted left by the other given integer |
shr | 2 | Int | Computes the given integer bitwise shifted right by the other given integer |
random | 0 | Empty | Return a random float between 0 and 1. Requires the rand feature flag. |
pi | 0 | Empty | Return the value of the PI constant. |
The following are examples of valid conditional statements:
HEIGHT >= 300.0
CROP == "corn"
(ELEV >= 525.0) && (HGT_AB_GR <= 5.0)
math::ln(CARBON) > 1.0
VALUE == null
Parameters:
Flag | Description |
---|---|
-i, --input | Name of the input vector file |
-o, --output | Name of the output LiDAR points |
-s, --statement | Modify statement e.g. ELEV>500.0 |
Python function:
wbt.extract_by_attribute(
i=None,
output=None,
statement="",
callback=default_callback
)
Command-line Interface:
>> ./whitebox_tools -r=ExtractByAttribute -i=input.shp ^
-o=output.shp --statement="ELEV>500.0"
Author: Dr. John Lindsay
Created: 03/06/2023
Last Modified: 03/06/2023
ExtractNodes
This tool converts vector lines or polygons into vertex points. The user must specify the name of the input vector, which must be of a polyline or polygon base shape type, and the name of the output point-type vector.
Parameters:
Flag | Description |
---|---|
-i, --input | Input vector lines or polygon file |
-o, --output | Output vector points file |
Python function:
wbt.extract_nodes(
i,
output,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=ExtractNodes -v --wd="/path/to/data/" ^
-i=file.shp -o=outfile.shp
Author: Dr. John Lindsay
Created: 04/09/2018
Last Modified: 13/10/2018
ExtractRasterValuesAtPoints
This tool can be used to extract the values of one or more rasters (--inputs
) at the sites of a set of vector points.
By default, the data is output to the attribute table of the input points (--points
) vector; however,
if the --out_text
parameter is specified, the tool will additionally output point values as text data
to standard output (stdout). Attribute fields will be added to the table of the points file, with field
names, VALUE1, VALUE2, VALUE3, etc. each corresponding to the order of input rasters.
If you need to plot a chart of values from a raster stack at a set of points, the ImageStackProfile may be more suitable for this application.
See Also: ImageStackProfile, FindLowestOrHighestPoints
Parameters:
Flag | Description |
---|---|
-i, --inputs | Input raster files |
--points | Input vector points file |
--out_text | Output point values as text? Otherwise, the only output is to to the points file's attribute table |
Python function:
wbt.extract_raster_values_at_points(
inputs,
points,
out_text=False,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=ExtractRasterValuesAtPoints -v ^
--wd="/path/to/data/" -i='image1.tif;image2.tif;image3.tif' ^
-points=points.shp
Author: Dr. John Lindsay
Created: 17/06/2018
Last Modified: 18/10/2019
FilterRasterFeaturesByArea
This tool takes an input raster (--input
) containing integer-labelled features, such as the output of the Clump tool,
and removes all features that are smaller than a user-specified size (--threshold
), measured in grid cells. The
user must specify the replacement value for removed features using the --background
parameter, which can be either
zero
or nodata
.
See Also: Clump
Parameters:
Flag | Description |
---|---|
-i, --input | Input raster file |
-o, --output | Output raster file |
--threshold | Remove features with fewer grid cells than this threshold value |
--background | Background value |
Python function:
wbt.filter_raster_features_by_area(
i,
output,
threshold,
background="zero",
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=FilterRasterFeaturesByArea -v ^
--wd="/path/to/data/" -i=input.tif -o=output.tif ^
--background=zero
Author: Dr. John Lindsay
Created: 22/06/2017
Last Modified: 18/10/2019
FindLowestOrHighestPoints
This tool locates the lowest and/or highest cells in a raster and outputs these locations to a vector
points file. The user must specify the name of the input raster (--input
) and the name of the output
vector file (--output
). The user also has the option (--out_type
) to locate either the lowest value,
highest value, or both values. The output vector's attribute table will contain fields for the points
XY coordinates and their values.
See Also: ExtractRasterValuesAtPoints
Parameters:
Flag | Description |
---|---|
-i, --input | Input raster file |
-o, --output | Output vector points file |
--out_type | Output type; one of 'area' (default) and 'volume' |
Python function:
wbt.find_lowest_or_highest_points(
i,
output,
out_type="lowest",
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=FindLowestOrHighestPoints -v ^
--wd="/path/to/data/" --input=DEM.tif -o=out.shp ^
--out_type=highest
Author: Dr. John Lindsay
Created: 12/06/2018
Last Modified: 13/10/2018
HeatMap
This tool is used to generate a raster heat map, or kernel density estimation
surface raster from a set of vector points (--input
). Heat mapping is a visualization and modelling technique
used to create the continuous density surface associated with the occurrences of a point phenomenon. Heat maps can
therefore be used to identify point clusters by mapping the concentration of event occurrence. For example, heat
maps have been used extensively to map the spatial distributions of crime events (i.e. crime mapping) or disease cases.
By default, the tool maps the density of raw occurrence events, however, the user may optionally specify an associated
weights field (--weights
) from the point file's attribute table. When a weights field is specified, these values
are simply multiplied by each of the individual components of the density estimate. Weights must be numeric.
The bandwidth parameter (--bandwidth) determines the radius of the kernel used in calculation of the density surface. There are guidelines that statisticians use in determining an appropriate bandwidth for a particular population and data set, but often this parameter is determined through experimentation. The bandwidth of the kernel is a free parameter which exhibits a strong influence on the resulting estimate.
The user must specify the kernel function type
(--kernel
). Options include 'uniform', 'triangular', 'epanechnikov', 'quartic', 'triweight', 'tricube', 'gaussian', 'cosine',
'logistic', 'sigmoid', and 'silverman'; 'quartic' is the default kernel type. Descriptions of each function can be found at the
link above.
The characteristics of the output raster (resolution and extent) are determined by one of two optional parameters,
--cell_size
and --base
. If the user optionally specifies the output grid cell size parameter (--cell_size
)
then the coordinates of the output raster extent are determined by the input vector (i.e. the bounding box) and
the specified cell size determines the number of rows and columns. If the user instead specifies the optional
base raster file parameter (--base
), the output raster's coordinates (i.e. north, south, east, west) and row
and column count, and therefore, resolution, will be the same as the base file.
Reference:
Geomatics (2017) QGIS Heatmap Using Kernel Density Estimation Explained, online resource: https://www.geodose.com/2017/11/qgis-heatmap-using-kernel-density.html visited 02/06/2022.
Parameters:
Flag | Description |
---|---|
-i, --input | Name of the input points shapefile |
--weights, --weight_field | Optional name of the attribute containing point weight |
-o, --output | Name of the output raster image file |
--bandwidth | Bandwidth (metres) |
--kernel | Kernel type; one of 'uniform', 'triangular', 'epanechnikov', 'quartic', 'triweight', 'tricube', 'gaussian', 'cosine', 'logistic', 'sigmoid', 'silverman' |
--cell_size | Optionally specified cell size of output raster, in metres. Not used when base raster is specified |
--base | Optionally specified input base raster file. Not used when a cell size is specified |
Python function:
wbt.heat_map(
i,
output,
weight_field=None,
bandwidth="",
kernel="quartic",
cell_size="",
base=None,
callback=default_callback
)
Command-line Interface:
>> ./whitebox_tools -r=HeatMap -i=points.shp -o=density.tif ^
--bandwidth=1000.0 --kernel='quartic' --cell_size=10.0
Source code is unavailable due to proprietary license.
Author: Dr. John Lindsay
Created: 01/06/2022
Last Modified: 01/06/2022
IdwInterpolation
points or a fixed neighbourhood size. This tool is currently configured to perform the later only, using a FixedRadiusSearch structure. Using a fixed number of neighbours will require use of a KD-tree structure. I've been testing one Rust KD-tree library but its performance does not appear to be satisfactory compared to the FixedRadiusSearch. I will need to explore other options here.
Another change that will need to be implemented is the use of a nodal function. The original Whitebox GAT tool allows for use of a constant or a quadratic. This tool only allows the former. This tool interpolates vector points into a raster surface using an inverse-distance weighted scheme.
Parameters:
Flag | Description |
---|---|
-i, --input | Input vector Points file |
--field | Input field name in attribute table |
--use_z | Use z-coordinate instead of field? |
-o, --output | Output raster file |
--weight | IDW weight value |
--radius | Search Radius in map units |
--min_points | Minimum number of points |
--cell_size | Optionally specified cell size of output raster. Not used when base raster is specified |
--base | Optionally specified input base raster file. Not used when a cell size is specified |
Python function:
wbt.idw_interpolation(
i,
field,
output,
use_z=False,
weight=2.0,
radius=None,
min_points=None,
cell_size=None,
base=None,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=IdwInterpolation -v ^
--wd="/path/to/data/" -i=points.shp --field=ELEV -o=output.tif ^
--weight=2.0 --radius=4.0 --min_points=3 ^
--cell_size=1.0
>>./whitebox_tools -r=IdwInterpolation -v ^
--wd="/path/to/data/" -i=points.shp --use_z -o=output.tif ^
--weight=2.0 --radius=4.0 --min_points=3 ^
--base=existing_raster.tif
Author: Dr. John Lindsay
Created: 10/05/2018
Last Modified: 9/12/2019
LayerFootprint
This tool creates a vector polygon footprint of the area covered by a raster grid or vector layer. It will create a vector rectangle corresponding to the bounding box. The user must specify the name of the input file, which may be either a Whitebox raster or a vector, and the name of the output file.
If an input raster grid is specified which has an irregular shape, i.e. it contains NoData values at the edges, the resulting vector will still correspond to the full grid extent, ignoring the irregular boundary. If this is not the desired effect, you should reclass the grid such that all cells containing valid values are assigned some positive, non-zero value, and then use the RasterToVectorPolygons tool to vectorize the irregular-shaped extent boundary.
See Also: MinimumBoundingEnvelope, RasterToVectorPolygons
Parameters:
Flag | Description |
---|---|
-i, --input | Input raster or vector file |
-o, --output | Output vector polygon file |
Python function:
wbt.layer_footprint(
i,
output,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=LayerFootprint -v --wd="/path/to/data/" ^
-i=file.shp -o=outfile.shp
Author: Dr. John Lindsay
Created: 31/09/2018
Last Modified: 09/09/2021
Medoid
This tool calculates the medoid for a series of vector features contained in a shapefile. The medoid of a two-dimensional feature is conceptually similar its centroid, or mean position, but the medoid is always a members of the input feature data set. Thus, the medoid is a measure of central tendency that is robust in the presence of outliers. If the input vector is of a POLYLINE or POLYGON ShapeType, the nodes of each feature will be used to estimate the feature medoid. If the input vector is of a POINT base ShapeType, the medoid will be calculated for the collection of points. While there are more than one competing method of calculating the medoid, this tool uses an algorithm that works as follows:
- The x-coordinate and y-coordinate of each point/node are placed into two arrays.
- The x- and y-coordinate arrays are then sorted and the median x-coordinate (Med X) and median y-coordinate (Med Y) are calculated.
- The point/node in the dataset that is nearest the point (Med X, Med Y) is identified as the medoid.
See Also: CentroidVector
Parameters:
Flag | Description |
---|---|
-i, --input | Input vector file |
-o, --output | Output vector file |
Python function:
wbt.medoid(
i,
output,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=Medoid -v --wd="/path/to/data/" ^
-i=in_file.shp -o=out_file.shp
Author: Dr. John Lindsay
Created: 20/09/2018
Last Modified: 24/07/2020
MinimumBoundingBox
This tool delineates the minimum bounding box (MBB) for a group of vectors. The MBB is the smallest box to
completely enclose a feature. The algorithm works by rotating the feature, calculating the axis-aligned
bounding box for each rotation, and finding the box with the smallest area, length, width, or perimeter. The
MBB is needed to compute several shape indices, such as the Elongation Ratio. The MinimumBoundingEnvelop
tool can be used to calculate the axis-aligned bounding rectangle around each feature in a vector file.
See Also: MinimumBoundingCircle, MinimumBoundingEnvelope, MinimumConvexHull
Parameters:
Flag | Description |
---|---|
-i, --input | Input vector file |
-o, --output | Output vector polygon file |
--criterion | Minimization criterion; options include 'area' (default), 'length', 'width', and 'perimeter' |
--features | Find the minimum bounding rectangles around each individual vector feature |
Python function:
wbt.minimum_bounding_box(
i,
output,
criterion="area",
features=True,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=MinimumBoundingBox -v ^
--wd="/path/to/data/" -i=file.shp -o=outfile.shp ^
--criterion=length --features
Author: Dr. John Lindsay
Created: 14/09/2018
Last Modified: 18/10/2019
MinimumBoundingCircle
This tool delineates the minimum bounding circle (MBC) for a group of vectors. The MBC is the smallest enclosing circle to completely enclose a feature.
See Also: MinimumBoundingBox, MinimumBoundingEnvelope, MinimumConvexHull
Parameters:
Flag | Description |
---|---|
-i, --input | Input vector file |
-o, --output | Output vector polygon file |
--features | Find the minimum bounding circle around each individual vector feature |
Python function:
wbt.minimum_bounding_circle(
i,
output,
features=True,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=MinimumBoundingCircle -v ^
--wd="/path/to/data/" -i=file.shp -o=outfile.shp --features
Author: Dr. John Lindsay
Created: 14/09/2018
Last Modified: 18/10/2019
MinimumBoundingEnvelope
This tool delineates the minimum bounding axis-aligned box for a group of vector features. The is the smallest rectangle to completely enclose a feature, in which the sides of the envelope are aligned with the x and y axis of the coordinate system. The MinimumBoundingBox can be used instead to find the smallest possible non-axis aligned rectangular envelope.
See Also: MinimumBoundingBox, MinimumBoundingCircle, MinimumConvexHull
Parameters:
Flag | Description |
---|---|
-i, --input | Input vector file |
-o, --output | Output vector polygon file |
--features | Find the minimum bounding envelop around each individual vector feature |
Python function:
wbt.minimum_bounding_envelope(
i,
output,
features=True,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=MinimumBoundingEnvelope -v ^
--wd="/path/to/data/" -i=file.shp -o=outfile.shp --features
Author: Dr. John Lindsay
Created: 31/09/2018
Last Modified: 18/10/2019
MinimumConvexHull
This tool creates a vector convex polygon around vector features. The convex hull is a convex closure of a set of points or polygon vertices and can be may be conceptualized as the shape enclosed by a rubber band stretched around the point set. The convex hull has many applications and is most notably used in various shape indices. The Delaunay triangulation of a point set and its dual, the Voronoi diagram, are mathematically related to convex hulls.
See Also: MinimumBoundingBox, MinimumBoundingCircle, MinimumBoundingEnvelope
Parameters:
Flag | Description |
---|---|
-i, --input | Input vector file |
-o, --output | Output vector polygon file |
--features | Find the hulls around each vector feature |
Python function:
wbt.minimum_convex_hull(
i,
output,
features=True,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=MinimumConvexHull -v ^
--wd="/path/to/data/" -i=file.shp -o=outfile.shp --features
Author: Dr. John Lindsay
Created: 03/09/2018
Last Modified: 18/10/2019
NaturalNeighbourInterpolation
This tool can be used to interpolate a set of input vector points (--input
) onto a raster grid using
Sibson's (1981) natural neighbour method. Similar to inverse-distance-weight interpolation (IdwInterpolation),
the natural neighbour method performs a weighted averaging of nearby point values to estimate the attribute
(--field
) value at grid cell intersections in the output raster (--output
). However, the two methods differ
quite significantly in the way that neighbours are identified and in the weighting scheme. First, natural neigbhour
identifies neighbours to be used in the interpolation of a point by finding the points connected to the
estimated value location in a Delaunay triangulation, that
is, the so-called natural neighbours. This approach has the main advantage of not having to specify an arbitrary
search distance or minimum number of nearest neighbours like many other interpolators do. Weights in the natural
neighbour scheme are determined using an area-stealing approach, whereby the weight assigned to a neighbour's value
is determined by the proportion of its Voronoi polygon that would
be lost by inserting the interpolation point into the Voronoi diagram. That is, inserting the interpolation point into
the Voronoi diagram results in the creation of a new polygon and shrinking the sizes of the Voronoi polygons associated
with each of the natural neighbours. The larger the area by which a neighbours polygon is reduced through the
insertion, relative to the polygon of the interpolation point, the greater the weight given to the neighbour point's
value in the interpolation. Interpolation weights sum to one because the sum of the reduced polygon areas must
account for the entire area of the interpolation points polygon.
The user must specify the attribute field containing point values (--field
). Alternatively, if the input Shapefile
contains z-values, the interpolation may be based on these values (--use_z
). Either an output grid resolution
(--cell_size
) must be specified or alternatively an existing base file (--base
) can be used to determine the
output raster's (--output
) resolution and spatial extent. Natural neighbour interpolation generally produces a
satisfactorily smooth surface within the region of data points but can produce spurious breaks in the surface
outside of this region. Thus, it is recommended that the output surface be clipped to the convex hull of the input
points (--clip
).
Reference:
Sibson, R. (1981). "A brief description of natural neighbor interpolation (Chapter 2)". In V. Barnett (ed.). Interpolating Multivariate Data. Chichester: John Wiley. pp. 21–36.
See Also: IdwInterpolation, NearestNeighbourGridding
Parameters:
Flag | Description |
---|---|
-i, --input | Input vector points file |
--field | Input field name in attribute table |
--use_z | Use the 'z' dimension of the Shapefile's geometry instead of an attribute field? |
-o, --output | Output raster file |
--cell_size | Optionally specified cell size of output raster. Not used when base raster is specified |
--base | Optionally specified input base raster file. Not used when a cell size is specified |
--clip | Clip the data to the convex hull of the points? |
Python function:
wbt.natural_neighbour_interpolation(
i,
output,
field=None,
use_z=False,
cell_size=None,
base=None,
clip=True,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=NaturalNeighbourInterpolation -v ^
--wd="/path/to/data/" -i=points.shp --field=HEIGHT ^
-o=surface.tif --resolution=10.0 --clip
Author: Dr. John Lindsay
Created: 08/12/2019
Last Modified: 10/12/2019
NearestNeighbourGridding
Creates a raster grid based on a set of vector points and assigns grid values using the nearest neighbour.
Parameters:
Flag | Description |
---|---|
-i, --input | Input vector Points file |
--field | Input field name in attribute table |
--use_z | Use z-coordinate instead of field? |
-o, --output | Output raster file |
--cell_size | Optionally specified cell size of output raster. Not used when base raster is specified |
--base | Optionally specified input base raster file. Not used when a cell size is specified |
--max_dist | Maximum search distance (optional) |
Python function:
wbt.nearest_neighbour_gridding(
i,
field,
output,
use_z=False,
cell_size=None,
base=None,
max_dist=None,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=NearestNeighbourGridding -v ^
--wd="/path/to/data/" -i=points.shp --field=ELEV -o=output.tif ^
--cell_size=1.0
>>./whitebox_tools -r=NearestNeighbourGridding ^
-v --wd="/path/to/data/" -i=points.shp --use_z -o=output.tif ^
--base=existing_raster.tif --max_dist=5.5
Author: Dr. John Lindsay
Created: 09/10/2018
Last Modified: 09/12/2019
PolygonArea
This tool calculates the area of vector polygons, adding the result to the vector's attribute table (AREA field). The area calculation will account for any holes contained within polygons. The vector should be in a projected coordinate system.
To calculate the area of raster polygons, use the RasterArea tool instead.
See Also: RasterArea
Parameters:
Flag | Description |
---|---|
-i, --input | Input vector polygon file |
Python function:
wbt.polygon_area(
i,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=PolygonArea -v --wd="/path/to/data/" ^
--input=polygons.shp
Author: Dr. John Lindsay
Created: 25/09/2018
Last Modified: 13/10/2018
PolygonLongAxis
This tool can be used to map the long axis of polygon features. The long axis is the longer of the two primary axes of the minimum bounding box (MBB), i.e. the smallest box to completely enclose a feature. The long axis is drawn for each polygon in the input vector file such that it passes through the centre point of the MBB. The output file is therefore a vector of simple two-point polylines forming a vector field.
Parameters:
Flag | Description |
---|---|
-i, --input | Input vector polygons file |
-o, --output | Output vector polyline file |
Python function:
wbt.polygon_long_axis(
i,
output,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=PolygonLongAxis -v ^
--wd="/path/to/data/" -i=file.shp -o=outfile.shp
Author: Dr. John Lindsay
Created: 14/09/2018
Last Modified: 03/03/2020
PolygonPerimeter
This tool calculates the perimeter of vector polygons, adding the result to the vector's attribute table (PERIMETER field). The area calculation will account for any holes contained within polygons. The vector should be in a a projected coordinate system.
Parameters:
Flag | Description |
---|---|
-i, --input | Input vector polygon file |
Python function:
wbt.polygon_perimeter(
i,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=PolygonPerimeter -v ^
--wd="/path/to/data/" --input=polygons.shp
Author: Dr. John Lindsay
Created: 25/09/2018
Last Modified: 13/10/2018
PolygonShortAxis
This tool can be used to map the short axis of polygon features. The short axis is the shorter of the two primary axes of the minimum bounding box (MBB), i.e. the smallest box to completely enclose a feature. The short axis is drawn for each polygon in the input vector file such that it passes through the centre point of the MBB. The output file is therefore a vector of simple two-point polylines forming a vector field.
Parameters:
Flag | Description |
---|---|
-i, --input | Input vector polygons file |
-o, --output | Output vector polyline file |
Python function:
wbt.polygon_short_axis(
i,
output,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=PolygonShortAxis -v ^
--wd="/path/to/data/" -i=file.shp -o=outfile.shp
Author: Dr. John Lindsay
Created: 15/09/2018
Last Modified: 03/03/2020
RadialBasisFunctionInterpolation
This tool interpolates vector points into a raster surface using a radial basis function (RBF) scheme.
Parameters:
Flag | Description |
---|---|
-i, --input | Input vector points file |
--field | Input field name in attribute table |
--use_z | Use z-coordinate instead of field? |
-o, --output | Output raster file |
--radius | Search Radius (in map units) |
--min_points | Minimum number of points |
--func_type | Radial basis function type; options are 'ThinPlateSpline' (default), 'PolyHarmonic', 'Gaussian', 'MultiQuadric', 'InverseMultiQuadric' |
--poly_order | Polynomial order; options are 'none' (default), 'constant', 'affine' |
--weight | Weight parameter used in basis function |
--cell_size | Optionally specified cell size of output raster. Not used when base raster is specified |
--base | Optionally specified input base raster file. Not used when a cell size is specified |
--use_data_hull | Only interpolate points within the data convex hull? |
Python function:
wbt.radial_basis_function_interpolation(
i,
field,
output,
use_z=False,
radius=None,
min_points=None,
func_type="ThinPlateSpline",
poly_order="none",
weight=0.1,
cell_size=None,
base=None,
use_data_hull=False,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=RadialBasisFunctionInterpolation -v ^
--wd="/path/to/data/" -i=points.shp --field=ELEV -o=output.tif ^
--weight=2.0 --radius=4.0 --min_points=3 --cell_size=1.0
Author: Dr. John Lindsay
Created: 10/12/2019
Last Modified: 10/12/2019
RasterArea
This tools estimates the area of each category, polygon, or patch in an input raster. The input raster must be categorical
in data scale. Rasters with floating-point cell values are not good candidates for an area analysis. The user must specify
whether the output is given in grid cells
or map units
(--units
). Map Units are physical units, e.g. if the rasters's
scale is in metres, areas will report in square-metres. Notice that square-metres can be converted into hectares by dividing
by 10,000 and into square-kilometres by dividing by 1,000,000. If the input raster is in geographic coordinates (i.e.
latitude and longitude) a warning will be issued and areas will be estimated based on per-row calculated degree lengths.
The tool can be run with a raster output (--output
), a text output (--out_text
), or both. If niether outputs are specified,
the tool will automatically output a raster named area.tif
.
Zero values in the input raster may be excluded from the area analysis if the --zero_back
flag is used.
To calculate the area of vector polygons, use the PolygonArea tool instead.
See Also: PolygonArea, RasterHistogram
Parameters:
Flag | Description |
---|---|
-i, --input | Input raster file |
-o, --output | Output raster file |
--out_text | Would you like to output polygon areas to text? |
--units | Area units; options include 'grid cells' and 'map units' |
--zero_back | Flag indicating whether zero values should be treated as a background |
Python function:
wbt.raster_area(
i,
output=None,
out_text=False,
units="grid cells",
zero_back=False,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=RasterArea -v --wd="/path/to/data/" ^
-i=input.tif -o=output.tif --out_text --units='grid cells' ^
--zero_back
Author: Dr. John Lindsay
Created: 10/02/2019
Last Modified: 04/12/2019
RasterCellAssignment
This tool can be used to create a new raster with the same coordinates and dimensions
(i.e. rows and columns) as an existing base image. Grid cells in the new raster will be
assigned either the row or column number or the x- or y-coordinate, depending on the
selected option (--assign
flag). The user must also specify the name of the base
image (--input
).
See Also: NewRasterFromBase
Parameters:
Flag | Description |
---|---|
-i, --input | Input raster file |
-o, --output | Output raster file |
-a, --assign | Which variable would you like to assign to grid cells? Options include 'column', 'row', 'x', and 'y' |
Python function:
wbt.raster_cell_assignment(
i,
output,
assign="column",
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=RasterCellAssignment -v ^
--wd="/path/to/data/" -i='input.tif' -o=output.tif ^
--assign='column'
Author: Daniel Newman
Created: August 10, 2017
Last Modified: 13/10/2018
RasterPerimeter
This tool can be used to measure the length of the perimeter of polygon features in a raster layer. The user must
specify the name of the input raster file (--input
) and optionally an output raster (--output
), which is the
raster layer containing the input features assigned the perimeter length. The user may also optionally choose to output text
data (--out_text
). Raster-based perimeter estimation uses the accurate, anti-aliasing algorithm of
Prashker (2009).
The input file must be of a categorical data type, containing discrete polygon features that have been assigned unique identifiers. Such rasters are often created by region-grouping (Clump) a classified raster.
Reference:
Prashker, S. (2009) An anti-aliasing algorithm for calculating the perimeter of raster polygons. Geotec, Ottawa and Geomtics Atlantic, Wolfville, NS.
See Also: RasterArea, Clump
Parameters:
Flag | Description |
---|---|
-i, --input | Input raster file |
-o, --output | Output raster file |
--out_text | Would you like to output polygon areas to text? |
--units | Area units; options include 'grid cells' and 'map units' |
--zero_back | Flag indicating whether zero values should be treated as a background |
Python function:
wbt.raster_perimeter(
i,
output=None,
out_text=False,
units="grid cells",
zero_back=False,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=RasterPerimeter -v ^
--wd="/path/to/data/" -i=input.tif -o=output.tif --out_text ^
--units='grid cells' --zero_back
Author: Dr. John Lindsay
Created: 04/12/2019
Last Modified: 18/12/2019
Reclass
This tool creates a new raster in which the value of each grid cell is determined by an input raster (--input
) and a
collection of user-defined classes. The user must specify the New value, the From value, and the To Just Less Than
value of each class triplet of the reclass string. Classes must be mutually exclusive, i.e. non-overlapping. For example:
--reclass_vals='0.0;0.0;1.0;1.0;1.0;2.0'
The above reclass string assigns 0.0 to all grid cells in the input image with values from 0.0-1.0 and an output
value of 1.0 from to inputs from 1.0-2.0. Alternatively, if the --assign_mode
flag is specified, Reclass will
operate in assign mode, using a reclass string composed of paired values:
--reclass_vals='0.0;1.0;1.0;2.0'
Here, 0.0 is assigned to input grid cell values of 1.0 and 1.0 is output for all input cells with a value of 2.0. Users may add the text strings min and max in the class definitions to stand in for the raster's minimum and maximum values. For example:
--reclass_vals='0.0;min;1.0;1.0;1.0;max'
Any values in the input raster that do not fall within one of the classes will be assigned its original value in the output raster. NoData values in the input raster will be assigned NoData values in the output raster, unless NoData is used in one of the user-defined reclass ranges (notice that it is valid to enter 'NoData' in these ranges).
See Also: ReclassEqualInterval, ReclassFromFile
Parameters:
Flag | Description |
---|---|
-i, --input | Input raster file |
-o, --output | Output raster file |
--reclass_vals | Reclassification triplet values (new value; from value; to less than), e.g. '0.0;0.0;1.0;1.0;1.0;2.0' |
--assign_mode | Optional Boolean flag indicating whether to operate in assign mode, reclass_vals values are interpreted as new value; old value pairs |
Python function:
wbt.reclass(
i,
output,
reclass_vals,
assign_mode=False,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=Reclass -v --wd="/path/to/data/" ^
-i='input.tif' -o=output.tif ^
--reclass_vals='0.0;0.0;1.0;1.0;1.0;2.0'
>>./whitebox_tools ^
-r=Reclass -v --wd="/path/to/data/" -i='input.tif' ^
-o=output.tif --reclass_vals='10;1;20;2;30;3;40;4' ^
--assign_mode
Author: Dr. John Lindsay
Created: 09/09/2017
Last Modified: 31/05/2021
ReclassEqualInterval
This tool reclassifies the values in an input raster (--input
) file based on an equal-interval scheme, where the
user must specify the reclass interval value (--interval
), the starting value (--start_val
), and optionally,
the ending value (--end_val
). Grid cells containing values that fall outside of the range defined by the starting
and ending values, will be assigned their original values in the output grid. If the user does not specify an ending
value, the tool will assign a very large positive value.
See Also: Reclass, ReclassFromFile
Parameters:
Flag | Description |
---|---|
-i, --input | Input raster file |
-o, --output | Output raster file |
--interval | Class interval size |
--start_val | Optional starting value (default is input minimum value) |
--end_val | Optional ending value (default is input maximum value) |
Python function:
wbt.reclass_equal_interval(
i,
output,
interval=10.0,
start_val=None,
end_val=None,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=ReclassEqualInterval -v ^
--wd="/path/to/data/" -i='input.tif' -o=output.tif ^
--interval=10.0 --start_val=0.0
Author: Dr. John Lindsay
Created: 06/07/2017
Last Modified: 30/01/2020
ReclassFromFile
This tool creates a new raster image in which the value of each grid cell is determined by the values in an
input raster image (--input
) and a reclass file (--reclass_file
). The reclass file is a text file
containing two or three columns, delimited (i.e. separated) by either a space, tab, or comma. The columns
describe respectively the New value, the From value, and the To Just Less Than value. Classes must be
mutually exclusive, i.e. non-overlapping. Users may add the text strings min and max in the class definitions
to stand in for the raster's minimum and maximum values.
If only two columns are present in the reclass file, i.e. the From column is left blank, the tool will operate in assign mode. That is, any cell in the input image that is equal to the From value (contained in the second column) will be assigned the New value (contained in the first column) in the output image.
Any values in the input raster that do not fall within one of the classes will be assigned its original value in the output raster. NoData values in the input raster will be assigned NoData values in the output raster.
See Also: Reclass, ReclassEqualInterval
Parameters:
Flag | Description |
---|---|
-i, --input | Input raster file |
--reclass_file | Input text file containing reclass ranges |
-o, --output | Output raster file |
Python function:
wbt.reclass_from_file(
i,
reclass_file,
output,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=ReclassFromFile -v ^
--wd="/path/to/data/" -i='input.tif' ^
--reclass_file='reclass.txt' -o=output.tif
Author: Dr. John Lindsay
Created: 10/09/2017
Last Modified: 13/02/2020
SmoothVectors
This tool smooths a vector coverage of either a POLYLINE or POLYGON base ShapeType. The algorithm uses a simple moving average method for smoothing, where the size of the averaging window is specified by the user. The default filter size is 3 and can be any odd integer larger than or equal to 3. The larger the averaging window, the greater the degree of line smoothing.
Parameters:
Flag | Description |
---|---|
-i, --input | Input vector POLYLINE or POLYGON file |
-o, --output | Output vector file |
--filter | The filter size, any odd integer greater than or equal to 3; default is 3 |
Python function:
wbt.smooth_vectors(
i,
output,
filter=3,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=SmoothVectors -v --wd="/path/to/data/" ^
-i=in_file.shp -o=out_file.shp --filter=9
Author: Dr. John Lindsay
Created: 01/10/2018
Last Modified: 13/10/2018
SplitVectorLines
This tool can be used to divide longer vector lines (--input
) into segments of a maximum specified length
(--length
).
See Also: AssessRoute
Parameters:
Flag | Description |
---|---|
-i, --input | Name of the input lines shapefile |
-o, --output | Name of the output lines shapefile |
--length | Maximum segment length (m) |
Python function:
wbt.split_vector_lines(
i,
output,
length=None,
callback=default_callback
)
Command-line Interface:
>> ./whitebox_tools -r=SplitVectorLines -i=input.shp ^
-o=line_segments.shp --length=100.0
Author: Prof. John Lindsay
Created: 23/04/2021
Last Modified: 23/04/2021
TinGridding
Creates a raster grid based on a triangular irregular network (TIN) fitted to vector points and linear interpolation within each triangular-shaped plane. The TIN creation algorithm is based on Delaunay triangulation.
The user must specify the attribute field containing point values (--field
). Alternatively, if the input Shapefile
contains z-values, the interpolation may be based on these values (--use_z
). Either an output grid resolution
(--cell_size
) must be specified or alternatively an existing base file (--base
) can be used to determine the
output raster's (--output
) resolution and spatial extent. Natural neighbour interpolation generally produces a
satisfactorily smooth surface within the region of data points but can produce spurious breaks in the surface
outside of this region. Thus, it is recommended that the output surface be clipped to the convex hull of the input
points (--clip
).
See Also: LidarTINGridding, ConstructVectorTIN, NaturalNeighbourInterpolation
Parameters:
Flag | Description |
---|---|
-i, --input | Input vector points file |
--field | Input field name in attribute table |
--use_z | Use the 'z' dimension of the Shapefile's geometry instead of an attribute field? |
-o, --output | Output raster file |
--resolution | Output raster's grid resolution |
--base | Optionally specified input base raster file. Not used when a cell size is specified |
--max_triangle_edge_length | Optional maximum triangle edge length; triangles larger than this size will not be gridded |
Python function:
wbt.tin_gridding(
i,
output,
field=None,
use_z=False,
resolution=None,
base=None,
max_triangle_edge_length=None,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=TINGridding -v --wd="/path/to/data/" ^
-i=points.shp --field=HEIGHT -o=tin.shp ^
--resolution=10.0
>>./whitebox_tools -r=TINGridding -v ^
--wd="/path/to/data/" -i=points.shp --use_z -o=tin.shp ^
--resolution=5.0
Author: Dr. John Lindsay
Created: 23/09/2018
Last Modified: 18/10/2019
TravellingSalesmanProblem
This tool finds approximate solutions to travelling salesman problems,
the goal of which is to identify the shortest route connecting a set of locations. The tool uses
an algorithm that applies a 2-opt heuristic and a
3-opt heuristic as a fall-back if the initial approach
takes too long. The user must specify the names of the input points vector (--input
) and output lines
vector file (--output
), as well as the duration, in seconds, over which the algorithm is allowed to search
for improved solutions (--duration
). The tool works in parallel to find more optimal solutions.
Parameters:
Flag | Description |
---|---|
-i, --input | Name of the input points shapefile |
-o, --output | Name of the output lines shapefile |
--duration | Maximum duration, in seconds |
Python function:
wbt.travelling_salesman_problem(
i,
output,
duration=60,
callback=default_callback
)
Command-line Interface:
>> ./whitebox_tools -r=TravellingSalesmanProblem -i=input.shp ^
-o=route.shp --duration=120
Author: Prof. John Lindsay
Created: 23/02/2022
Last Modified: 06/05/2022
VectorHexBinning
The practice of binning point data to form a type of 2D histogram, density plot,
or what is sometimes called a heatmap, is quite useful as an alternative for the
cartographic display of of very dense points sets. This is particularly the case
when the points experience significant overlap at the displayed scale. The
PointDensity
tool can be used to perform binning based on a regular grid (raster
output). This tool, by comparison, bases the binning on a hexagonal grid.
The tool is similar to the CreateHexagonalVectorGrid tool, however instead will
create an output hexagonal grid in which each hexagonal cell possesses a COUNT
attribute which specifies the number of points from an input points file (Shapefile
vector) that are contained within the hexagonal cell.
In addition to the names of the input points file and the output Shapefile, the user must also specify the desired hexagon width (w), which is the distance between opposing sides of each hexagon. The size (s) each side of the hexagon can then be calculated as, s = w / [2 x cos(PI / 6)]. The area of each hexagon (A) is, A = 3s(w / 2). The user must also specify the orientation of the grid with options of horizontal (pointy side up) and vertical (flat side up).
See Also:
LidarHexBinning, PointDensity
, CreateHexagonalVectorGrid
Parameters:
Flag | Description |
---|---|
-i, --input | Input base file |
-o, --output | Output vector polygon file |
--width | The grid cell width |
--orientation | Grid Orientation, 'horizontal' or 'vertical' |
Python function:
wbt.vector_hex_binning(
i,
output,
width,
orientation="horizontal",
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=VectorHexBinning -v ^
--wd="/path/to/data/" -i=file.shp -o=outfile.shp --width=10.0 ^
--orientation=vertical
Author: Dr. John Lindsay
Created: 16/09/2018
Last Modified: 13/10/2018
VoronoiDiagram
This tool creates a vector Voronoi diagram for a set of vector points. The Voronoi diagram is the dual graph of the Delaunay triangulation. The tool operates by first constructing the Delaunay triangulation and then connecting the circumcenters of each triangle. Each Voronoi cell contains one point of the input vector points. All locations within the cell are nearer to the contained point than any other input point.
A dense frame of 'ghost' (hidden) points is inserted around the input point set to limit the spatial extent of the diagram. The frame is set back from the bounding box of the input points by 2 x the average point spacing. The polygons of these ghost points are not output, however, points that are situated along the edges of the data will have somewhat rounded (paraboloic) exterior boundaries as a result of this edge condition. If this property is unacceptable for application, clipping the Voronoi diagram to the convex hull may be a better alternative.
This tool works on vector input data only. If a Voronoi diagram is needed to tessellate regions associated with a set of raster points, use the EuclideanAllocation tool instead. To use Voronoi diagrams for gridding data (i.e. raster interpolation), use the NearestNeighbourGridding tool.
See Also: ConstructVectorTIN, EuclideanAllocation, NearestNeighbourGridding
Parameters:
Flag | Description |
---|---|
-i, --input | Input vector points file |
-o, --output | Output vector polygon file |
Python function:
wbt.voronoi_diagram(
i,
output,
callback=default_callback
)
Command-line Interface:
>>./whitebox_tools -r=VoronoiDiagram -v --wd="/path/to/data/" ^
-i=points.shp -o=tin.shp
Author: Dr. John Lindsay
Created: 03/10/2018
Last Modified: 16/06/2020